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Figure 1. Indoor scenes consist of complex compositions of objects and backgrounds. Our proposed method, Total-Decom, (a) performs
3D reconstruction from posed multiview images, (b) decomposes the reconstructed mesh to generate high-quality meshes for individual
objects and backgrounds with minimal human annotations. This approach facilitates such applications as (c) object re-texturing and (d)
scene reconfiguration. For additional demonstrations, please refer to our supplementary materials and videos.

Abstract

Scene reconstruction from multi-view images is a fun-
damental problem in computer vision and graphics. Re-
cent neural implicit surface reconstruction methods have
achieved high-quality results; however, editing and ma-
nipulating the 3D geometry of reconstructed scenes re-
mains challenging due to the absence of naturally decom-
posed object entities and complex object/background com-
positions. In this paper, we present Total-Decom, a novel
method for decomposed 3D reconstruction with minimal
human interaction. Our approach seamlessly integrates
the Segment Anything Model (SAM) with hybrid implicit-
explicit neural surface representations and a mesh-based

*Equal contribution.
†Corresponding author.

region-growing technique for accurate 3D object decom-
position. Total-Decom requires minimal human annota-
tions while providing users with real-time control over the
granularity and quality of decomposition. We extensively
evaluate our method on benchmark datasets and demon-
strate its potential for downstream applications, such as
animation and scene editing. The code is available at
https://github.com/CVMI-Lab/Total-Decom.git.

1. Introduction

Scene reconstruction from multi-view images is a funda-
mental problem in computer vision and graphics [13, 14, 24,
27, 29, 31, 32]. Recently, neural implicit surface reconstruc-
tion methods such as VolSDF [43] and NeuS [39] have been
proposed to address this problem and have achieved high-
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quality results. However, editing and manipulating the 3D
geometry of a reconstructed scene remains challenging due
to the absence of naturally decomposed object entities and
complex object/background compositions. Such function-
ality is, however, desired for many real-world applications,
such as editing, animation, and simulation. Consequently,
we are motivated to investigate decomposed 3D reconstruc-
tion, which enables the extraction of desired object-level
shapes and facilitates scene manipulations such as reorga-
nizing objects in a scene (see Fig. 1).

A few attempts have been made to decompose a re-
constructed 3D scene into individual objects using sepa-
rate Multi-Layer Perceptron (MLP) layers to represent spe-
cific objects [19, 22, 40, 41]. However, these approaches
face scalability issues when dealing with scenes containing
numerous objects [19]. Furthermore, the success of these
methods heavily relies on human-annotated instance masks
on multi-view images during training, which poses chal-
lenges in obtaining them for large-scale practical applica-
tions. Moreover, even with ground-truth instance labels, the
existing state-of-the-art method [41] still fails to produce
satisfactory results, with multiple objects missing, as shown
by the second row of Fig. 7, due to the inherent difficulties
in separating all objects using implicit representations.

In this paper, we introduce Total-Decom, a novel method
designed for decomposed 3D reconstruction with minimal
human interaction. At the core of our method lies the in-
tegration of the Segment Anything Model (SAM) [17]– an
interactive image segmentation model– hybrid implicit and
explicit surface representation, and a mesh-based region-
growing approach. This integration allows the decompo-
sition of a scene into the background and individual objects
with minimal interactions and provides users with control
over the granularity and quality of decomposition via real-
time interactions, as shown in Fig. 1.

Specifically, our method first employs an implicit neural
surface representation for its ability to achieve dense and
complete 3D reconstruction from images. At this stage, we
also integrate object-aware information by distilling image
features from the SAM model for follow-up efficient in-
teraction and accurate decomposition. After obtaining the
learned implicit surface and features, our approach further
extracts explicit mesh surfaces while distilling features into
their vertices. The explicit representation provides valu-
able geometry topology information for scene decomposi-
tion and enables real-time neural rendering to enhance hu-
man interactions. Then, in order to identify and separate
the desired object for surface decomposition, we utilize the
SAM decoder and the rendered SAM feature, converting
a human-annotated click on a single rendered image view
into corresponding dense object masks. Thanks to the seg-
mentation capability of SAM and our feature rendering de-
sign, this interactive process also allows users to obtain the

desired objects at different granularities while minimizing
human interactions and avoiding high computational costs.
Lastly, with the derived object mask from a single view with
good object boundaries serving as object seeds, we propose
a mesh-based region-growing module that progressively ex-
pands these seeds along the mesh surface to obtain decom-
posed 3D object surfaces. This process leverages distilled
feature similarities of vertices and 3D mesh geometry topol-
ogy for accurate object decomposition, further ensuring pre-
cision by confining the growing process to mask boundaries
obtained from the SAM decoder.

We extensively validate our approach on benchmark
datasets. More importantly, our high-quality decomposed
3D reconstruction enables many downstream applications
in manipulating and animating objects in virtual environ-
ments, including re-texturing [4] with diffusion model, de-
formation, and motion. (See Fig. 1 and videos in supple-
mentary).

In sum, our main contributions are as follows:
• We introduce a novel pipeline that seamlessly integrates

the segment anything model with hybrid implicit-explicit
neural surface representations for 3D decomposed recon-
struction from sparse posed images. Our approach re-
quires minimal human annotations (approximately one
click per object on average) while achieving high decom-
position quality.

• We propose a new mesh-based region-growing method
that leverages the geometry topology of 3D mesh, feature
similarities among vertices, object masks, and boundaries
derived from the SAM model to accurately identify and
extract object surfaces for decomposition.

• We perform an extensive evaluation of our approach on
various datasets, demonstrating its superior ability to de-
compose objects with high accuracy. Furthermore, we
showcase the potential of our results for numerous down-
stream tasks, such as animation and scene editing.

2. Related Work
Object Compositional Reconstruction In order to bet-
ter reconstruct the geometry of objects in complex scenes,
many research efforts have been devoted to exploring better
object-level compositional scene representations. For in-
stance, ObjSDF [40] proposes a compositional scene repre-
sentation to assist in geometry optimization in highly com-
posite scenes and better object-level extraction with the help
of multi-view consistent instance labels. Kong et al. [19]
build an object-level scene model from a real-time RGB-
D input stream for object-compositional SLAM. Wu et al.
build upon ObjSDF and further mitigate object occlusions
in complex scenes through an object distinction regular-
ization term. Additionally, a new occlusion-aware object
opacity rendering scheme is introduced to reduce the neg-
ative impact of occlusion on scene reconstruction. How-
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Figure 2. Visualization for distilled generalized features.

ever, these methods rely heavily on accurate multi-view
consistent ground-truth instance-level labels and cannot ef-
fectively preserve all objects within the reconstruction.
Decompositional Neural Rendering Neural radiance
fields (NeRFs) offer a unified representation to represent
the appearance [25, 44], and other spatially varying prop-
erties [20]. In the field of decompositional neural render-
ing, many research efforts investigate the distillation of gen-
eralized features [8, 16, 18, 35], or segmentation predic-
tions [1, 33] from large-scale pre-trained image backbones,
such as DINO [2, 28], CLIP features [30] and panoptic seg-
mentation [5], to neural fields. Specifically, Semantic NeRF
[47] explores incorporating regressing semantic labels into
the process of Novel View Synthesis. Building upon this,
distilled feature fields (DFFs) [18] and neural feature fusion
fields (N3F) [35] have emerged as pioneering approaches
for distilling [12] semantic features from pretrained models,
such as LSeg [21] and DINO [2], into NeRF for decompo-
sition. ISRF [8] does not rely solely on feature matching,
but instead obtains the final results through region grow-
ing. These approaches leverage feature similarities or pre-
dicted instance/semantic codes for grouping and implicitly
decomposing a scene, requiring no additional human anno-
tation efforts and offering greater scalability for large-scale
scenes. However, when directly applied to the reconstruc-
tion task, these strategies often produce decomposed out-
puts that are incomplete and exhibit poorly defined con-
tours (see Fig. 3) due to ill-defined object boundaries [8] or
multiview inconsistent and low-quality segmentation pre-
dictions [5, 11, 37] used during training. In contrast to ex-
isting methods, our work not only avoids the need for exten-
sive manual interaction through a geometry-guided feature
approach but also enables the extraction of any constituent
part of a complex scene.
NeRF with SAM Recently, segmentation methods based
on different representations [5, 17, 21, 23] have devel-
oped rapidly. SAM [17], as an emerging vision foundation
model, achieves efficient 2D interactive segmentation ca-
pabilities through extensive high-quality annotated super-
vision. It brings forth more possibilities in this field and
has the potential to help achieve thorough decomposition
of complex scenes with plausible 2D segmentation capa-
bilities. Recently, some concurrent works have explored
the combination of SAM and NeRF for decomposition.
SA3D [3] incorporates cross-view self-prompting technique
to obtain multi-view consistent masks. However, running
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Figure 3. Comparison on different decomposition methods with
SAM feature. SAM + region growing represents object extraction
with our method. SAM + similarity indicates object extraction
with similarity matching in 3D space, following [18, 35].

SAM multiple times incurs high computational costs, and
the segmentation results are sensitive to interaction trajec-
tories, leading to unstable performance.

3. Empirical Study on General Visual Features

A central challenge in decomposed 3D scene reconstruction
is incorporating object-aware knowledge to accurately sep-
arate individual objects and backgrounds. While existing
methods have explored the use of ground-truth multi-view
consistent instance-level annotations [19, 22, 40, 41], these
approaches suffer from high annotation costs and scalability
issues. Motivated by recent advancements in vision founda-
tion models providing generic features, we investigate their
potential for object decomposition and reducing human an-
notation requirements. Although this strategy has been ex-
amined in neural rendering [8, 18, 35], it remains under-
explored in decomposed 3D reconstruction, which necessi-
tates more precise boundary information. Accordingly, we
investigate features from three foundation models: CLIP-
LSeg [21], DINO [2], and SAM [17].

We utilize the MonoSDF [45] for implicit neural surface
reconstruction, augment it with a feature rendering head,
and distill features from the above 2D backbones. The ren-
dered features after distillation are depicted in Fig. 2. We
observe that: (1) distilled CLIP-LSeg features cannot distin-
guish objects of the same categories; (2) distilled DINO fea-
tures lack accurate object boundaries; and (3) distilled SAM
features preserve object boundaries. However, none of these
features are discriminative enough to accurately separate
different object instances. For example, while SAM fea-
tures perform the best, directly grouping 3D objects based
on similar feature responses leads to the merging of distant
areas due to the absence of geometry and object boundary
information, as shown in Fig. 3.

Despite the above shortcomings, we observe that the dis-
tillation brings the features of the same object from different
views closer than the original 2D features from SAM, sug-
gesting that high feature similarity often indicates a high
likelihood of belonging to the same object, as shown in
Fig. 4. Consequently, we propose a novel approach that
leverages SAM features and a mesh-based region-growing
method to decompose a 3D scene with minimal human an-
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Figure 4. Visualization of the SAM feature for the same object in
different views with t-SNE [36]. All the features are in the same
feature space.

notations, typically requiring only one click per object.

4. Overview

Our objective is to reconstruct a 3D scene from multi-view
images and decompose it into individual object entities and
the background while minimizing the need for human an-
notations. To achieve this, we propose a novel pipeline that
integrates SAM into a hybrid implicit-explicit surface rep-
resentation, combined with a mesh-based region-growing
method to effectively identify and decompose arbitrary 3D
objects within a scene. The overview of our approach is
illustrated in Fig. 5.

As shown in Fig. 5 (Left) and detailed in Sec. 5, we first
adopt an implicit neural surface representation to achieve
dense and complete 3D reconstruction from images while
incorporating object-aware information by distilling image
features from the SAM model into an implicit neural fea-
ture field (see Fig. 5: bottom ). Importantly, we introduce
geometry-guided regularization integrated with semantic
priors to disentangle foreground objects and backgrounds,
including occluded and invisible background regions with
details unfolded in Sec. 5.

Upon obtaining the learned implicit surface and fea-
tures, our approach further extracts explicit mesh surfaces
for foreground objects and background; see Fig. 5: Back-
ground dB(p) and Foreground dF (p); and distills features
into their vertices; see Fig. 5: Neural Mesh. The explicit
mesh surface provides valuable geometry topology infor-
mation for follow-up scene decomposition and enables real-
time neural rendering to enhance human interactions. Then,
given rendered images and features from the mesh surface,
our method employs the SAM decoder to convert image
clicks into dense object masks to precisely identify the tar-
get object in one rendered view (see Fig. 5: Interactive De-
composition ) and allow users control over granularity and
quality while minimizing human interactions. Details are
elaborated in Sec. 6. Notably, by leveraging the rendered
SAM features from our model, we only require the decod-
ing process of the SAM model at this stage, thus circum-
venting high computational costs.

Lastly, using the vertices corresponding to dense object
masks as seeds, we propose a mesh-based region-growing
module that progressively expands the seeds along the mesh
surface to obtain object surfaces as detailed in Sec. 6. This
module harnesses the feature similarities of vertices and the
geometry topology of the 3D mesh to achieve accurate ob-
ject decomposition. The growing process is also confined
by the vertices corresponding to mask boundaries, which
further ensures the precision of object decomposition.

5. Neural Implicit Feature Distillation and Sur-
face Reconstruction

In this stage, we employ an implicit neural field for recon-
struction from posed images, disentangle foreground and
background using geometric priors, and distill features from
the SAM encoder to incorporate object-aware information.
An illustration of our implicit reconstruction is depicted in
Fig. 5. In the following, we first elaborate on our recon-
struction network and rendering formula, and then detail
our core design for achieving background and foreground
separation while reconstructing occluded foreground areas.

Reconstruction network and SDF-based neural implicit
surface representation. We use the signed distance func-
tion d(p) to represent the geometry of the surface at each
point p. Considering a ray r(t) = o + tv from a camera
position o in the direction of v, we calculate the signed dis-
tance function of each sampled point p using the geometry
MLP and use three MLPs to predict the color C(p, v), se-
mantic logits S(p), and generalized feature F (p) distilled
from the SAM encoder, respectively; refer to Fig. 5 for de-
tails. To apply the volume rendering formula, we follow
VolSDF [43] to convert the signed distance function to vol-
ume density σ(p):

σ(p) =


1
2β exp

(
−d(p)

β

)
if d(p) ≥ 0

1
β −

1
2β exp

(
d(p)
β

)
if d(p) < 0

, (1)

where β > 0 is a learnable parameter to decide the sharp-
ness of the surface density. Then, we use the volume ren-
dering formula [15] to obtain outputs E of the target pixel,

Ê(r) =

M∑
i=1

T r
i αiê

r
i , (2)

where ê ∈ {ĉ, n̂, d̂, ŝ, f̂} represent the predicted color, nor-
mal, depth, semantic logits, generalized feature. T r

i and αi

represent the transmittance and alpha value (a.k.a opacity)
of the sample point, and their values can be computed by

T r
i =

i−1∏
j=1

(1− αi), αi = 1− exp(−σr
i δ

r
i ) , (3)
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Figure 5. Overview of Total-Decom. (1) Foreground and background decomposed neural reconstruction. We have four networks in
this stage to predict the geometry, appearance, semantic, and SAM features per point. We follow the ObjSDF++ [41] to use the foreground
and background compositional representation with pseudo geometry priors and apply min operation to construct the whole scene. Notably,
the foreground is constrained with object distinct loss (Eq. (6)) and the background is regularized with Manhattan loss (Eq. (7)) and
floor reflection loss (Eq. (8)). Furthermore, we also train a solely feature network to render the generalized features. (2) Interactive
Decomposition. We firstly extract the SAM feature from the feature network into the vertices of the reconstruction mesh. Subsequently,
for any given pose, we can render a color image and a feature image. Passing the feature image and user-selected prompt into the SAM
decoder allows us to obtain the 2D mask of the regions of interest. Utilizing our newly proposed surface region-growing algorithm, we can
then acquire the 3D mesh corresponding to these regions. Our method enables the user to select objects with varying levels of granularity,
requiring just one or two clicks.

where δri is the distance between adjacent sample points.
We follow the loss function Lrgb and Lgeo in

MonoSDF [45] to optimize the rendered color, depth, and
normal. For the rendered semantic Ŝ(r), we use the cross-
entropy loss defined as

Lsem = −Er∈R

[
L∑

l=1

Pl(r) log P̂l(r)

]
, (4)

where Pl(r), P̂l(r) are the multi-class semantic probability
as class l of the ground truth map and rendering map for
ray r, respectively. Additionally, we use the L2 loss Lf to
optimize the rendered generalized feature F̂ (r) for distilling
the F (r) from the SAM encoder.

Modeling foreground and background compositional
scene geometry. To represent foreground and background
geometry separately, we construct two different SDF fields
S = {F ,B} following [41]. The single scene Ω is the
composition of the Ω = F

⋃
B. The scene SDF can be

calculated as the minimum of two fields SDFs dΩ(p) =
min{dF (p), dB(p)}. To learn the geometry from the su-
pervision of foreground and background masks, we adopt
occlusion-aware opacity rendering [41] to guide the learn-
ing of different field surfaces. The loss function is defined

as:
LO = Er∈R[

∑
Si∈S

∥∥∥ÔSi
(r)−OSi

(r)
∥∥∥], (5)

where Ô(r) =
∫ tf
tn

T (r(t))α(r(t))dt to formulate the
occlusion-aware object opacity in the depth range [tn, tf ].

For reconstructing the clean foreground mesh, we follow
the object distinction regularization term [41] forcing each
point in a single scene to be only located inside one field,
which is defined as follows:

Lreg = Ep[
∑

dSi
(p)̸=dΩ(p)

ReLU (−dSi(p)− dΩ(p))] , (6)

Compared with the foreground, the background is more
difficult to reconstruct because it has many occluded ar-
eas that are not visible in all captured views. To regularize
the reconstruction of these areas, we follow the Manhattan
world assumption [10, 46], i.e., the surfaces of man-made
scenes should be aligned with three dominant directions.
We use this to regularize the reconstruction of the floor and
the wall using,

Lman =Er∈F(p̂f (r)|1− n̂(r) · nf |)+
Er∈W( min

i∈{−1,0,1}
p̂w(r)|i− n̂(r) · nw|), (7)
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Figure 6. The effect of different constraint on Replica room 1.

where p̂f , p̂w represent the probabilities of the pixel being
floor and wall derived from the semantic MLP, F,W are
the sets of camera rays of image pixels that are labeled as
floor and wall regions, n̂r is the rendering normal of rays
r, nf = ⟨0, 0, 1⟩ represent the assumed normal direction in
the floor regions and nw is a learnable normal to represent
the normal direction in the wall regions.

As shown in Fig. 6, applying this constraint to regularize
background reconstruction will yield more regular geome-
try but there still exist many undesired structures due to the
inaccurate semantic information of these invisible regions.
Fortunately, the majority of occlusions occur on the ground,
and the ceiling corresponds one-to-one with the structure
of the floor. Therefore, we can utilize the structural in-
formation of the ceiling to constrain the unknown areas on
the ground. Specifically, when we have a frame of an im-
age that observes the ceiling, we can start from points on
the ceiling pc, emitting a ray along the direction of gravity
ng = ⟨0, 0,−1⟩. In the background domain, the first point
pf hit by this ray is considered as the ground. By employ-
ing the root finding method [27], we locate this point and
constrain its normal vector by

Lfloor = |1− n(pf ) · nf |. (8)

As shown in Fig. 6, this constraint can help us get the com-
plete and regular background.

6. Interactive Decomposition
Upon obtaining the implicit foreground surface dF and fea-
tures, we focus on decomposing the foreground into indi-
vidual objects and allowing users to control the decompo-
sition through interactions in this stage, as shown in Fig. 5.
We propose to use an explicit mesh surface as it can pro-
vide geometry information for better decomposition and al-
low efficient rendering by using rasterization or combining
with Gaussian splatting. We provide details on the inte-
gration of Gaussian splatting in the supplementary mate-
rial. Hence, before conducting decomposition, we extract
foreground mesh MF and distill features to its vertices
V = {v1, ..., vn}. Then, each vertex vi is associated with
a distilled feature fvi and a 3D location pi. The vertices
on the mesh are connected via edges E , which are deter-
mined by the geometry topology of the mesh. As shown
in Sec. 3, it is still challenging to rely solely on distilled
features fvi to decompose 3D objects. Thus, we introduce

human annotations to identify each object and aim to mini-
mize human interactions. The following details how we re-
alize object decomposition based on a designed mesh-based
region-growing method with human interactions using our
designed method. We will first introduce how we obtain
seed points for an object by combining SAM, rendered fea-
tures, and human clicks. Then we elaborate on our new
mesh-based region-growing algorithm for acquiring object-
level meshes to realize a complete decomposition.

Object Seed Generation Given aMF , the goal is to ob-
tain a set of initial seed points for each object o by using
human annotations. As shown in Fig. 5, with one image
I containing o with corresponding feature map fI rendered
fromM, the user will produce a click c on the image iden-
tifying the desired object. Based on the click c, serving as
the prompt, and fI , a 2D mask mo that describes the object
can be efficiently obtained through the lightweight mask de-
coder of SAM. Users are also allowed to adjust its clicks
according to mo to refine it. Our experiment shows that
most of the objects’ mask mo can be obtained with just one
click. The pixels in mask mo are then mapped to their cor-
responding vertices to yield the 3D object seeds denoted as
So for the follow-up region-growing algorithm. This pro-
cess efficiently turns a single click into a set of vertices to
enhance the accuracy of identifying object o. Besides, to
locate object boundaries, we also extract the contour pixels
co of mo and map them to their corresponding vertices Bo,
which forms the boundary condition for region growing.

Region-growing on Mesh for Decomposition Given the
seeds So and boundary condition Bo, we design a region-
growing method to obtain the corresponding mesh Mo for
object o. As illustrated in Algorithm 1 in the supplementary
material, the seeds So are progressively expanded along the
meshMF to include their connected neighboring vertices
with high feature similarities. The boundary vertices Bo
constrain the propagation process by enforcing it to stop if
including vertices that will be outside of mask mo. This
helps ensure the boundary accuracy of the decomposed ob-
ject. It is worth mentioning that the geometric relationship
between vertices is leveraged in this progressive expand-
ing process, benefiting the extraction of objects and reduc-
ing computation. Compared to region-growing algorithm
that purely relies on spatial location [8] or features, incor-
porating edges from the mesh as growth paths introduces
a constrain from topological structure, thereby making the
growth process more consistent with the geometric struc-
ture and avoiding including vertices that are not geometri-
cally related with seed vertices but share similar features
with them, making the extraction of object be accurate. We
present more analysis on the region-growing algorithm in
the supplementary material.



7. Experiments
7.1. Experiment Setup

Implementation Details. Our method is implemented us-
ing Pytorch and uses the Adam optimizer with a learning
rate of 5e − 4 for the tiny MLP part ( 2 layers with 256
channels for the geometry, appearance, and feature predic-
tion, 1 layer with 128 nodes for the semantic prediction ) In
the reconstruction strategy, we minimize the loss

L =Lrgb + Lgeo + λ1LO + λ2Lreg+

λ3Lman + λ4Lfloor + λ5Lsem + λ6Lf ,
(9)

to optimize our implicit neural surface, where we set
λ1, λ2, λ3, λ4, λ5, λ6 as 0.1, 0.1, 0.01, 0.01, 0.5, 0.1, re-
spectively. More details can be found in the supplementary.

Dataset and Metrics Our experiments are mainly con-
ducted on the Replica [34] dataset, which is a synthetic
dataset with each providing accurate geometry, HDR tex-
tures and 3D instance annotations. We follow the selec-
tion of ObjSDF++ [41] to evaluate the effectiveness of our
method. We report both instance-level and holistic recon-
struction results on this dataset. The reconstruction results
are mainly evaluated by Chamfer-L1 and F-Score. To fur-
ther demonstrate the robustness of our method, we also use
the ScanNet [6] as the real-world dataset which provides
1513 scenes. Due to its lack the object object-level ground
truth, we show the visualized assessment in the main paper.
Besides the public dataset mentioned before, we also evalu-
ate the performance of our method on the self-captured data,
one is the room from the NICE-SLAM [48] and another is
the self-captured billiard room. More details and results can
be seen in the supplementary.

Compared Methods. The compared methods are mainly
divided into two categories. The first one is the object com-
positional reconstruction method that uses multiple fields
to represent each object with the supervision from ground
truth instance masks, like ObjSDF++ [41]. We compare
the instance level and holistic scene reconstruction quality
with them. The second category is the volume density based
methods that decompose each scene with generalized fea-
tures, like ISRF [8], DFF [18]. Since this type of method
does not introduce geometric constraints, we mainly com-
pare the way of decomposition.

7.2. Results

Scene Reconstruction Decomposed Reconstruction

Method Chamfer-L1 ↓ F-score ↑ Chamfer-L1 ↓ F-score ↑
ObjSDF++ 3.58 85.69 3.84 ± 0.02 79.49 ± 0.08

Ours 3.53 85.82 3.58 ± 0.01 81.70 ± 0.08

Table 1. Quantitative assessments from Replica dataset on scene
and decomposed reconstruction.

Scene reconstruction and object decomposition on the
Replica dataset. To evaluate the decomposed reconstruc-
tion accuracy of Total-Decom, we conduct experiments
on the Replica dataset as it provides ground-truth objects’
meshes for evaluation. We mainly compared our approach
with the ObjSDF++, the state-of-the-art method that de-
composes the scene structure with pseudo geometry pri-
ors as far as we know. Because the number of decom-
posed objects from ObjSDF++ is limited (around 25 ob-
jects per scene), we only evaluate the foreground objects
that ObjSDF++ can extract for a fair comparison. In re-
ality, our approach can generally yield a more complete
decomposition of the scene with more objects. The re-
sults are shown in Table 1. Although our approach doesn’t
rely on ground-truth instance masks for decomposition, our
method still surpasses ObjSDF++ in both scene and de-
composed object reconstruction results. It is worth not-
ing that our approach only requires 1.41 clicks on average
per object, while ObjSDF++ requires dense human instance
annotations on multi-view images. Our reconstructed re-
sults also outperform ObjSDF++ qualitatively. As shown
in Fig. 7, ObjSDF++ tends to inaccurately reconstruct the
vase (Room 0) and trash bin (Office 4) within the back-
ground field or may fail to recover the structure of the chair
(Office 4). With an elaborately mesh-based region-growing
method facilitated by SAM, our method can deliver decom-
posed results of higher qualities.

Background reconstruction. We demonstrate the quality
of background reconstruction in Fig. 6 and Fig. 7. Our ap-
proach consistently delivers high-quality clean background
reconstructions and reconstructs occluded areas.

Comparison of Decomposition Capabilities We com-
pare the decomposition capabilities of our model with ex-
isting methods in NeRF and 3D reconstruction in terms of
whether they can support geometric decomposition, multi-
grained decomposition, scene-level decomposition, and in-
teractive selection. Tab. 2 presents the comparison results,
indicating that our method is the sole approach encompass-
ing all capabilities. Additional results and applications ex-

Method Geometry Multi-grained Scene-level Single-View
Interaction

LSeg + DFF [18] ✗ ✗ ✗ ✗
DINO +

DFF/N3F [35] ✗ ✓ ✗ ✗

ISRF [8] ✗ ✓ ✗ ✗
SAMNeRF [3] ✗ ✓ ✗ ✗
Panoptic
Lifting [33] ✗ ✗ ✓ ✗

AssetField [42] ✗ ✗ ✓ ✗
vMAP [19] ✓ ✗ ✓ ✗

ObjSDF++ [41] ✓ ✗ ✓ ✗
Ours ✓ ✓ ✓ ✓

Table 2. Comparison of decomposition capabilities between dif-
ferent methods.
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Figure 7. Visualized assessments on different datasets. We present the reconstruction results for the background, foreground and decom-
posed objects on Replica [34], ScanNet [6], NICE-SLAM [48] and our self-captured billiard room. To clearly visualize the decomposed
objects, we use different color for the different instances.

ploiting these capabilities can be found in the supplemen-
tary material.

8. Conclusion

We presented Total-Decom, a novel framework for recon-
structing a 3D surface and decomposing it into individual
objects and backgrounds, significantly reducing the reliance
on object annotations. Our approach centers on integrating
SAM with hybrid implicit-explicit surface representations
and a mesh-based region-growing algorithm. SAM pro-
vides object-aware features and facilitates the acquisition
of more accurate object seeds for region growth. Simul-
taneously, the region-growing algorithm effectively com-
bines geometric topology from explicit mesh and object-

aware features from SAM to accurately decompose desired
objects with minimal human annotations. Qualitative and
quantitative evaluations indicate that our method can yield
not only precise geometry but also extract as many objects
as possible. We hope our proposed method will facilitate
the development of environment simulators in the future.

Acknowledgments: This work has been supported by
Hong Kong Research Grant Council - Early Career Scheme
(Grant No. 27209621), General Research Fund Scheme
(Grant No. 17202422), and RGC Matching Fund Scheme
(RMGS). Part of the described research work is conducted
in the JC STEM Lab of Robotics for Soft Materials funded
by The Hong Kong Jockey Club Charities Trust.



Supplementary
In the supplementary file, we provide more implementa-

tion details and more results not elaborated in our paper due
to the paper length limit:
• Sec. S9: more implementation details.
• Sec. S10: more qualitative comparisons and qualitative

results.
• Sec. S11: more ablation results
• Sec. S12: limitation analysis.

S9. Implementation Details
S9.1. Hash Grid in Implicit Reconstruction

Our entire pipeline primarily consists of four distinct net-
works: geometry network, appearance network, semantic
network, and feature network. The geometry, appearance,
and semantic networks share the same hash grid, while
the feature network utilizes another. We follow instant-
NGP [26] to construct the hash grid as a replacement for
the frequency position encoding used in vanilla NeRF [25]
to accelerate model convergence. Specifically, the 3D space
is represented by multi-level feature grids:

Rl :=
⌊
Rminb

l
⌋
, b := exp

(
lnRmax − lnRmin

L− 1

)
, (10)

where Rmin = 16 and Rmax = 2048 represent the coars-
est and finest resolutions, respectively. Each level grid has
T = 2 dimensional features. Both the feature network and
geometry network grids share the same structure.

S9.2. Loss Function

Our training objective consists of different losses in-
cluding Lrgb,Lgeo,LO,Lreg,Lman,Lfloor,Lsem,Lf simulta-
neously, following [10, 41, 45]. Their detailed formulations
are shown below. (1) Lrgb is the color loss function defined
as

Lrgb =
∑
r∈R
||C(r)− Ĉ(r)|| , (11)

where C(r) is the ground truth color value alone the ray
r and Ĉ(r) is the rendered color along the ray r. Lgeo
is the geometry loss function to constrain the geometry
of the implicit surface which includes three different parts
Ldepth,Lnormal,Leik, defined as

Lgeo = 0.1Ldepth + 0.05Lnormal + 0.05Leik . (12)

Ldepth is the scale-invariant depth loss to regularize the ren-
dering depth D̂(r) by the pseudo depth D̄(r) from Om-
nidata [7], which is defined as

Ldepth =
∑
r∈R
∥wD̂(r) + q − D̄(r)∥2 , (13)

Algorithm 1 Mesh-based Region Growing

1: Input: V associated with fvi for each vertex vi, So, Bo,
E , a similarity threshold τ , an attenuation parameter θ
and a tolerance ϵ

2: Output: the vertex set Vo for the object meshMo

3: Initialize the target vertex set Vo ← So
4: Initialize the intermediate target vertex set V ′

o ← Vo
5: initialize the candidate seed vertex set S ′o ← ∅
6: while So ̸= ∅ do
7: for each vertex s in So do
8: Find all the neighbors of s with E , as N
9: for each vertex n in N do

10: sim(fs, fn)← fs·fn
∥fs∥∥fn∥

11: if sim(fs, fn) > τ then
12: add n to V ′

o, add n to So
13: else
14: add s to S ′o
15: end if
16: end for
17: end for
18: if |V ′

o∩Bo|
|Bo| > ϵ then

19: return Vo
20: else
21: Vo ← V ′

o, So ← S ′o, S ′o ← ∅
22: end if
23: τ ← τ − θ
24: end while

where w, q represents scale and shift solved by the least
square method, and R is the unit of all rays. Lnormal is the
normal loss defined as:

Lnormal =
∑
r∈R
∥N̂(r)−N̄(r)∥1+∥1−N̂(r)N̄(r)∥1 , (14)

where N̂(r) is the predicted normal from Omnidata [7] and
N̄(r) is the rendered normal. Leik is the eikonal loss pro-
posed by [9] to regularize the signed distance field, which
is defined as

Leik =
∑

EdΩ
(∥∇dΩ(p)∥ − 1)

2
. (15)

S9.3. Analysis of Region Growing

The detailed algorithm of mesh-based region growing is il-
lustrated in Algorithm 1. The success of the mesh-based
region growing algorithm hinges on propagating 2D guid-
ance into the 3D space. The accurate mesh extraction can
be attributed to the following reasons:
(1) The distilled 3D features are both view-consistent and
instance-aware. As demonstrated in Fig. 4 of the main pa-
per, for features of the same object under different view-
points, the inter-class distance of the distilled feature pairs



is significantly smaller than that of the feature pairs derived
from the teacher model [17]. Consequently, with the dis-
tilled features used in both 2D and 3D spaces, 2D seed pix-
els and boundary pixels can serve as reliable references for
3D seed vertices and boundary vertices.
(2) The SAM decoder, on top of rendered SAM features
from one view, produces a dense mask that serves as the
seeds for the region-growing process and constrains the
boundary for growth.
(3) The explicit geometry information, i.e., vertices and
edges, constrains the growing process by considering the
topology of meshes, effectively ruling out vertices that have
high feature similarities or are spatially adjacent but not ge-
ometrically connected.
(4) The separation of the foreground mesh MF allows
the algorithm to operate effectively in low-noise environ-
ments by removing conflicting mesh vertices from the back-
ground. With a pure foreground mesh for growth, the ab-
sence of surfaces originating from the background mini-
mizes interference during the extraction process.

In summary, these factors collectively enable our method
to extract the 3D mesh of a specified object using only a
single viewpoint and a few clicks.

S10. More Qualitative Comparisons and Qual-
itative Results

S10.1. ScanNet Results
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Figure S8. Visualization assessments of the reconstruction results
on the ScanNet dataset.

To demonstrate the effectiveness of the foreground and

background reconstruction method. We also compare our
method against various recent works on the ScanNet dataset
as shown in Table S3. Our method achieves state-of-the-art
on both Chamfer-L1 and F-score. In particular, our method
obtains a significant increase on ”Comp” and ”Recall” be-
cause of the constraint on the invisible regions. However,
the ”Acc” and ”Prec” are slightly decreasing because the
ground truth mesh doesn’t have the complete background
mesh which will influence these two metrics.

As shown in Fig. S8, our method can obtain a cleaner
background mesh and detailed foreground mesh on the real
scene dataset which is much easier for cross-scene editing
and getting the mesh asset for many other downstream ap-
plications.

Method Acc ↓ Comp ↓ C-L1 ↓ Prec ↑ Recall ↑ F-score ↑
COLMAP [32] 0.047 0.235 0.141 71.1 44.1 53.7
UNISURF [27] 0.554 0.164 0.359 21.2 36.2 26.7
VolSDF [43] 0.414 0.120 0.267 32.1 39.4 34.6
NeuS [39] 0.179 0.208 0.194 31.3 27.5 29.1
Manhattan-SDF [10] 0.072 0.068 0.070 62.1 56.8 60.2
NeuRIS [38] 0.050 0.049 0.050 71.7 66.9 69.2
MonoSDF [45] 0.035 0.048 0.042 79.9 68.1 73.3
ObjSDF++ 0.039 0.045 0.042 78.1 70.6 74.0
Ours 0.044 0.040 0.042 74.7 74.8 74.7

Table S3. Quantitative assessments of the proposed model against
previous works on the ScanNet dataset.

S10.2. Real Time Interaction on the Replica dataset

In the main paper, we introduce Total-Decom, a method
capable of decomposing an entire scene at any granular-
ity level. We have also designed a graphical user inter-
face (GUI) to interactively decompose desired objects for
downstream applications. The foreground and background
reconstructed meshes are loaded simultaneously, and the
vertices are used as fixed initialization points to train the
Gaussian Splatting model for real-time rendering. Regard-
ing feature rendering, we utilize the trained grid and apply
the rasterization method to obtain the feature map of the
observed view. The rendered features and selected prompts
are then passed into the SAM decoder to generate the mask
for region-growing. Further details are showcased in the
accompanying video.

S10.3. More results on scenes defying Manhattan
assumption

We tested the influence of Manhattan constraints on the
TNT auditorium, which features sloped ground. As shown
in Fig. S9, our constraint effectively eliminates floaters and
yields smooth floors. This success is because the optimiza-
tion focuses on minimizing overall loss (Eq.(9)), and the
regularization term (Eq.(7∼8)) only penalizes heavily re-
constructions that substantially violate the constraints, such
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Figure S9. Background reconstruction results for Auditorium
scene, consider moving this to the supp
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Figure S10. Visualization of mask2former results.

Background Decomposed Billiards

Figure S11. Visualization decomposed results on the self-captured
dataset.

as floaters on the floor. The combinatorial effects of all loss
terms make the optimization robust toward corner cases.

S10.4. More Demonstrations and Evaluations on
Self-captured Data

We utilize self-captured data to demonstrate the generaliza-
tion and practicality of our method. The data are captured
using Apple ARKit. Our method can successfully sepa-
rate the background and foreground, as well as interactively
decompose the desired objects, as illustrated in Fig. S11.
Moreover, with 16 clicks, we can successfully obtain the
16 very small billiards. Note that different instances are

ObjSDF++ Ours

Room0 34 41
Room1 22 24
Room2 24 30
Office0 21 23
Office1 13 20
Office2 28 38
Office3 29 38
Office4 21 28

Table S4. The number of decomposed reconstructed foreground
objects on different scenes from Replica following the ObjSDF++
splits (100 images).

labeled with different colors. To our knowledge, no exist-
ing works can achieve this level of separation without re-
lying on exhaustive human annotations, such as ObjSDF
and ObjSDF++. Even when provided with dense annota-
tions across frames, decomposing all small objects remains
a challenging task when relying solely on implicit recon-
struction in existing methods as illustrated in Fig. 7 in the
main paper.

We are aware that there are some existing methods for
panoptic segmentation, such as Mask2Former [5], which
can generate semantic and instance labels for each frame.
However, when applied to such a challenging scenario, they
fail to segment these small objects, as seen in Fig. S10.
This suggests that they cannot be readily used even for seg-
menting a single frame, let alone ensuring view consistency
across multiple frames for preparing the data required by
existing methods such as ObjSDF, ObjSDF++, and vMAP.

S10.5. Number of Selected Objects

Table S4 presents the number of extracted objects on the
Replica dataset. Although ObjSDF++ employs ground-
truth instance labels for scene decomposition, it fails to ex-
tract certain objects, as illustrated in Fig. 7 of the main
paper. Consequently, ObjSDF++ decomposes fewer ob-
jects with many objects missing compared to our proposed
method. This highlights that achieving complete decom-
position of 3D objects is challenging when solely relying
on implicit representations, whereas our combined implicit
and explicit design attains higher performance. Addition-
ally, our method attains such decomposition qualities with
merely one or two human clicks per object, rather than re-
lying on dense masks across multiple views for a single ob-
ject, as required in ObjSDF and ObjSDF++.

S11. Ablation Studies

Component-wise Study We conduct ablation studies on the
Replica dataset to evaluate the effectiveness of our designed
modules, as this dataset provides instance-level ground-



Decomposed Reconstruction

Method Chamfer-L1 ↓ F-score ↑
Full Model 2.59 87.35

w/o Foreground and
Background Decomposition 3.10 84.75

w/o Region Growing 6.98 54.01

Table S5. Ablation study assessing the influence of different
components to the decomposed reconstruction results on Replica
room0.

truth geometry. We examine the influence of foreground
and background decomposition and the region-growing al-
gorithm on object selection. Table S5 summarizes the re-
sults of our ablation study. “w/o Foreground and Back-
ground Reconstruction” refers to selecting objects on the
whole mesh, while “w/o Region Growing” indicates the use
of a simple cosine similarity to segment objects instead of
our designed algorithm. Foreground and background de-
composition methods enhance selection quality, as the fore-
ground mesh naturally prevents the region-growing method
from selecting the background mesh. The carefully de-
signed region-growing method achieves an overall improve-
ment of 33.34 in F-score and 4.39 in Chamfer-L1. These
experiments demonstrate the effectiveness of our proposed
method.

S12. Limitations

While our method is capable of decomposing scenes with
minimal human interaction, it still faces some limitations
in handling occluded foreground areas. For instance, our
approach cannot complete the occluded areas of foreground
objects due to the absence of training supervision. In the fu-
ture, we plan to explore the integration of generative meth-
ods to complete such invisible 3D objects and obtain high-
quality object meshes even in the presence of occlusions.
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